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Deep learning is data-hungry
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How about scientific data?




Case study: nano-scale imaging
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Case study: medical imaging

MRI

Medical imaging data
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Cost high
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How to address the data bottleneck?




Reducing training data
for MRI reconstruction



MRI reconstruction

S -transform + undersampling + noise



Data augmentation in classification: straightforward

,dag)\, s

- 9d0g)/ ==

training data

Data augmentation in regression: non-trivial

1. Output is not invariant to transformations
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2. Distribution shift due to noise
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augmented signal augmented noise!



MRAugment pipeline
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Val. SSIM

Results on various datasets
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Robustness experiments

Unseen scanners

2% train

no DA

DA

3T — 3T
3T — 1.5T
1.57" — 3T

0.8646
0.8241
0.8174

0.9049
0.8551
0.8913

100% train

no DA

DA

31— 3T
3T — 1.5T
157 — 3T

0.9177
0.8686
0.9043

0.9185
0.8690
0.9062

Unseen anatomies

Val. SSIM

0.89

0.88

0.87 |-

0.86

0.85

—— no DA
— DA

10 20 30 40
Epochs

knee —» brain

50

Hallucinations




Leveraging self-learned
models for data reduction



Detail encoding
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Val. SSIM

Detail encoding results

CelebA-HQ dataset
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Future work

e Closingthe gap

09r F
D
0.85 |- .
=
wn
U). 0.8
5
0.75 |- —e— Baseline i
—6— Our method
0.7

- 10x reduction in low-data regime

- achieve 100% performance with 1-10% data

I ! L ! ! I
1% 10%

Training examples

e |ow-field MRI

100%




hank you for your attention!

https://github.com/MathFLDS/MRAugment



