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Inverse Problems

̂x = arg min
x

∥𝒜(x) − y∥2 + ℛ(x)

• Solving inverse problems

Classical approaches End-to-end deep learning Diffusion solvers
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• Expending the same amount of resources to reconstruct any 

sample (easy or hard) is potentially wasteful.

Easy

Hard

Idea: adapt the compute allocation based on the difficulty of the problem 
on a sample-by-sample basis in test time!



Adapt…
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Quantifying difficulty

Image space

• arbitrarily high perturbation


• reconstruction is trivial
y = c ⋅ x, c ∈ ℝ+

Idea: quantify severity of degradation in the latent space 
of an autoencoder

• natural space to quantify loss of 

information due to corruption
y = x + n, n ∼ 𝒩(0, σ2I )

• small perturbation


• reconstruction is challenging

Autoencoder latents

• compressed representation of 

relevant information in image



Severity Encoding
• Estimate degradation severity given corrupted image 

Severity 
encoder

Pretrained 
encoder

y



Severity Encoding
• Estimate degradation severity given corrupted image 

Severity 
encoder

Pretrained 
encoder

Target 
embed. z0

Autoencoder latent 
space

y



Severity Encoding

Objectives: 
1. Predict latent of clean image

• Estimate degradation severity given corrupted image 

Severity 
encoder

Pretrained 
encoder

Target 
embed. z0

Autoencoder latent 
space

y
Predicted 
embed.

̂z



Severity Encoding

Objectives: 
1. Predict latent of clean image
2. Estimate magnitude of error

• Estimate degradation severity given corrupted image 

Severity 
encoder

Pretrained 
encoder

Target 
embed. z0

Autoencoder latent 
space

y

Predicted severitŷσ
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Severity Encoding

Objectives: 
1. Predict latent of clean image
2. Estimate magnitude of error

• Estimate degradation severity given corrupted image 

Severity 
encoder

Pretrained 
encoder

Target 
embed. z0

Autoencoder latent 
space

We leverage latent prediction error as a proxy for 
degradation severity!

Intuition: the more degraded the 
input, the larger the prediction error

y

Predicted severitŷσ

Predicted 
embed.

̂z
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Training objective

min
θ

̂z(y; θ) ̂σ(y; θ)σ̄(y; z0)

Assumption: prediction error is zero-mean i.i.d. Gaussian:

reconstruction error prediction

• We minimize the following loss:
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… and diffuse



Diffusion-based Inverse 
Problem Solving

• Bayesian framework

solve inverse problem = sample from posterior



Diffusion-based Inverse 
Problem Solving

• Bayesian framework

solve inverse problem = sample from posterior

Reverse diffusion
Noisy image manifolds

̂x

x*

Data-consistency update
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Flash-Diffusion

Flash-Diffusion acts as a wrapper around any baseline latent diffusion 
solver, imbuing it with sample-adaptivity.
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Finding optimal starting time

Severity encoder Latent diffusion process
match 

SNR

Adaptive starting time:



Experiments
• Comparison with baseline solvers

Flash-Diffusion accelerates the baseline solver by a factor of up to 10x 
on average and greatly improves reconstruction quality.



Experiments
• Adaptivity

FlashDiffusion achieves best perceptual quality compared to any 
non-adaptive starting time.
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Conclusion
1. Difficulty of a reconstruction problem may vary greatly on a sample-by-sample 

basis.

2. We propose Severity Encoding to estimate degradation severity in test-time.

3. Flash-Diffusion automatically scales reconstruction effort with 
degradation severity via latent diffusion.



Thank you for your 
attention!

CodePaper
https://github.com/z-fabian/flash-diffusion



Severity experiments



Experiments
• Robustness

Flash-Diffusion performance degrades more gracefully than the 
baseline solver’s performance.


