Adapt and Diffuse: Sample-adaptive Reconstruction via Latent Diffusion Models

Zalan Fabian*, Berk Tinaz*, Mahdi Soltanolkotabi

USC Center on AI Foundations for the Sciences

Inverse Problems

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}) + oldsymbol{n}$$

Inverse Problems

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}) + oldsymbol{n}$$

Solving inverse problems

 $\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$

Classical approaches

End-to-end deep learning

Diffusion solvers

Sample-by-sample variation in reconstruction difficulty

Sample-by-sample variation in reconstruction difficulty

Sample-by-sample variation in reconstruction difficulty

Sample + degradation

Sample-by-sample variation in reconstruction difficulty

Sample-adaptive compute

 Expending the same amount of resources to reconstruct any sample (easy or hard) is potentially wasteful.

Sample-adaptive compute

 Expending the same amount of resources to reconstruct any sample (easy or hard) is potentially wasteful.

Idea: adapt the compute allocation based on the difficulty of the problem on a **sample-by-sample** basis in test time!

Adapt...

Image space

 $y = c \cdot x, \ c \in \mathbb{R}^+$

- arbitrarily high perturbation
- reconstruction is trivial

Image space

- arbitrarily high perturbation
- reconstruction is trivial

 $y = c \cdot x, \ c \in \mathbb{R}^+$

- small perturbation
- reconstruction is challenging

 $y = x + n, \ n \sim \mathcal{N}(0, \sigma^2 I)$

Image space

- arbitrarily high perturbation
- reconstruction is trivial

 $y = x + n, n \sim \mathcal{N}(0, \sigma^2 I)$

 $y = c \cdot x, \ c \in \mathbb{R}^+$

- small perturbation
- reconstruction is challenging

Autoencoder latents

 compressed representation of relevant information in image

Image space

- arbitrarily high perturbation
- reconstruction is trivial

 $y = c \cdot x, \ c \in \mathbb{R}^+$

- $y = x + n, \ n \sim \mathcal{N}(0, \sigma^2 I)$
- small perturbation
- reconstruction is challenging

Autoencoder latents

- compressed representation of relevant information in image
- natural space to quantify loss of information due to corruption

Image space

- arbitrarily high perturbation
- reconstruction is trivial

 $y = x + n, n \sim \mathcal{N}(0, \sigma^2 I)$

 $y = c \cdot x, \ c \in \mathbb{R}^+$

- small perturbation
- reconstruction is challenging

Autoencoder latents

- compressed representation of relevant information in image
- natural space to quantify loss of information due to corruption

Idea: quantify severity of degradation **in the latent space** of an autoencoder

Estimate degradation severity given corrupted image

Pretrained encoder

Estimate degradation severity given corrupted image

Estimate degradation severity given corrupted image

Objectives:

1. Predict latent of clean image

Estimate degradation severity given corrupted image

Objectives:

- 1. Predict latent of clean image
- 2. Estimate magnitude of error

Estimate degradation severity given corrupted image

Objectives:

- 1. Predict latent of clean image
- 2. Estimate magnitude of error

Intuition: the more degraded the input, the larger the prediction error

Estimate degradation severity given corrupted image

Objectives:

- 1. Predict latent of clean image
- 2. Estimate magnitude of error

Intuition: the more degraded the input, the larger the prediction error

We leverage **latent prediction error as a proxy** for degradation severity!

Training objective

• We minimize the following loss:

$$\min_{\theta} \mathbb{E}_{\boldsymbol{x}_0 \sim q_0(\boldsymbol{x}_0), \boldsymbol{y} \sim \mathcal{N}(\mathcal{A}(\boldsymbol{x}_0), \sigma_y^2 \mathbf{I})} \left[\left\| \boldsymbol{z}_0 - \hat{\boldsymbol{z}}(\boldsymbol{y}; \theta) \right\|^2 + \lambda_{\sigma} \left\| \quad \bar{\sigma}(\boldsymbol{y}; \boldsymbol{z}_0) - \hat{\sigma}(\boldsymbol{y}; \theta) \right\|^2 \right]$$

reconstruction

error prediction

Training objective

• We minimize the following loss:

$$\begin{split} \min_{\theta} \mathbb{E}_{\boldsymbol{x}_{0} \sim q_{0}(\boldsymbol{x}_{0}), \boldsymbol{y} \sim \mathcal{N}(\mathcal{A}(\boldsymbol{x}_{0}), \sigma_{y}^{2} \mathbf{I})} \left[\left\| \boldsymbol{z}_{0} - \hat{\boldsymbol{z}}(\boldsymbol{y}; \theta) \right\|^{2} + \lambda_{\sigma} \left\| \quad \bar{\sigma}(\boldsymbol{y}; \boldsymbol{z}_{0}) - \hat{\sigma}(\boldsymbol{y}; \theta) \right\|^{2} \right] \\ \text{reconstruction} \qquad \text{error prediction} \end{split}$$

<u>Assumption</u>: prediction error is zero-mean i.i.d. Gaussian:

$$oldsymbol{e}(oldsymbol{y}) = \hat{oldsymbol{z}} - oldsymbol{z}_0 \sim \mathcal{N}(oldsymbol{0}, \sigma^2_*(oldsymbol{y}) \mathbf{I})$$

$$\bar{\sigma}^2(\boldsymbol{y}, \boldsymbol{z}_0) = \frac{1}{d-1} \sum_{i=1}^d (\boldsymbol{e}^{(i)} - \frac{1}{d} \sum_{j=1}^d \boldsymbol{e}^{(j)})^2$$

Predicted severity strongly correlates with blur level

y 0.4 0.3 0.2 0.1 0.2 0.1 0.2 0.4 0.6 0.8 1Blur amount

 $\hat{\sigma}$ vs t ($R^2 = 0.824$)

٩

- Predicted severity strongly correlates with blur level
- •Outliers indicate the presence of additional contributing factors

 $\hat{\sigma}$ vs t ($R^2 = 0.824$)

- Predicted severity strongly correlates with blur level
- Outliers indicate the presence of additional contributing factors

y 0.40.30.20.10.20.10.20.40.60.8 1Blur amount

 $\hat{\sigma}$ vs t ($R^2 = 0.824$)

surprisingly hard

 $\hat{\sigma}$ vs t ($R^2 = 0.824$) surprisingly hard Predicted severity strongly 0.4 correlates with blur level 0.3 -٩ • Outliers indicate the 0.2 presence of additional 0.1 contributing factors surprisingly easy 0.20.8 0.40.60

Blur amount

... and diffuse

Diffusion-based Inverse Problem Solving

Bayesian framework

 $m{y} = \mathcal{A}(m{x}) + m{n}$ solve inverse problem = sample from posterior

 $p_{ heta}(oldsymbol{x}|oldsymbol{y}) \propto p_{ heta}(oldsymbol{x}) p(oldsymbol{y}|oldsymbol{x})$

 $\nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{y}) = \nabla_{\boldsymbol{x}} \log p_{\theta}(\boldsymbol{x}) + \nabla_{\boldsymbol{x}} \log p(\boldsymbol{y}|\boldsymbol{x})$

Diffusion-based Inverse Problem Solving

Bayesian framework

 $m{y} = \mathcal{A}(m{x}) + m{n}$ solve inverse problem = sample from posterior $p_{ heta}(m{x}|m{y}) \propto p_{ heta}(m{x})p(m{y}|m{x})$ $abla_{m{x}}\log p_{ heta}(m{x}|m{y}) =
abla_{m{x}}\log p_{ heta}(m{x}) +
abla_{m{x}}\log p(m{y}|m{x})$

Data-consistency update Reverse diffusion Noisy image manifolds

Reconstruction in 200 steps

Hard example

Easy example

Reconstruction in 50 steps

Easy example

Reconstruction in 50 steps

Easy example

Reconstruction in 50 steps

Flash-Diffusion **acts as a wrapper** around *any* baseline latent diffusion solver, imbuing it with sample-adaptivity.

Latent diffusion process

 $q_i(\boldsymbol{z}_i|\boldsymbol{z}_0) \sim \mathcal{N}(a_i \boldsymbol{z}_0, b_i^2 \mathbf{I})$

Adaptive starting time:

$$i_{start}(\mathbf{y}) = \arg\min_{i \in [1,2,\dots,N]} \left| \frac{1}{\hat{\sigma}(\mathbf{y})^2} - \frac{a_i^2}{b_i^2} \right|$$

Experiments

Comparison with baseline solvers

FFHQ	Gaussian Deblurring (Varying)					Gaussian Deblurring (Fixed)					Nonlinear Deblurring				Random Inpainting					
Method	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$\text{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$\mathrm{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$\textbf{SSIM}(\uparrow)$	$LPIPS(\downarrow)$	$\text{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$\textbf{SSIM}(\uparrow)$	$LPIPS(\downarrow)$	$\text{FID}(\downarrow)$	NFE
Latent-DPS	23.69	0.6418	0.3579	87.26	1000	22.88	0.6136	0.3690	89.38	1000	22.07	0.5974	0.3814	90.89	1000	23.96	0.6566	0.3666	93.65	1000
Flash(Latent-DPS)	<u>29.17</u>	<u>0.8182</u>	0.2240	<u>55.57</u>	100.3	27.44	<u>0.7691</u>	0.2823	80.44	127.7	27.17	<u>0.7659</u>	0.2695	<u>69.78</u>	136.1	29.21	<u>0.8414</u>	<u>0.1945</u>	<u>53.95</u>	104.7
PSLD (Rout et al., 2024)	25.06	0.6769	0.3194	79.79	1000	23.72	0.6183	0.3324	88.45	1000	-	-	-	-	-	24.94	0.6617	0.3672	85.64	1000
Flash(PSLD)	<u>29.26</u>	0.8205	0.2203	53.27	100.3	27.44	0.7657	<u>0.2797</u>	<u>65.35</u>	127.7	-	-	-	-	-	27.06	<u>0.8018</u>	0.2185	<u>55.12</u>	104.7
GML-DPS (Rout et al., 2024)	24.98	0.6884	0.3471	100.27	1000	24.01	0.6574	0.3621	102.80	1000	23.00	0.6426	0.3812	108.79	1000	25.20	0.7044	0.3527	103.3	1000
<pre>Flash(GML-DPS)</pre>	<u>29.21</u>	<u>0.8276</u>	0.2274	<u>69.16</u>	100.3	27.47	<u>0.7699</u>	<u>0.2816</u>	<u>69.81</u>	127.7	27.11	<u>0.7640</u>	0.2756	<u>81.93</u>	136.1	<u>28.95</u>	<u>0.8437</u>	<u>0.1957</u>	<u>59.39</u>	104.7
ReSample (Song et al., 2023)	28.77	0.8219	0.2587	81.96	500	27.62	0.7789	0.3148	102.47	500	26.61	0.7318	0.2838	68.57	500	27.51	0.7892	0.2460	63.39	500
Flash(ReSample)	<u>29.07</u>	<u>0.8330</u>	<u>0.2383</u>	<u>74.76</u>	49.9	<u>27.77</u>	<u>0.7845</u>	<u>0.3092</u>	100.84	63.6	26.88	<u>0.7660</u>	<u>0.2667</u>	<u>64.57</u>	67.8	28.13	<u>0.8260</u>	0.2045	<u>56.67</u>	52.1
AE	29.46	0.8358	0.2671	89.29	-	27.69	0.7820	0.3396	110.56	-	27.17	0.7786	0.3364	111.24	-	29.23	0.8432	0.2515	85.87	-
SwinIR (Liang et al., 2021)	30.69	0.8583	0.2409	87.61	-	28.41	0.8021	0.3091	108.49	-	27.60	0.7928	0.3093	99.56	-	30.08	0.8654	0.2223	78.32	-
DPS (Chung et al., 2022a)	28.34	0.7791	0.2465	81.70	1000	25.49	0.6829	0.3035	97.89	1000	22.77	0.6191	0.3601	109.58	1000	28.30	0.8049	0.2451	82.78	1000

Flash-Diffusion accelerates the baseline solver by a factor of up to 10x on average and greatly improves reconstruction quality.

Experiments

• Adaptivity

FlashDiffusion achieves best perceptual quality compared to any non-adaptive starting time.

Conclusion

1. Difficulty of a reconstruction problem may vary greatly on a **sample-by-sample** basis.

Conclusion

1. Difficulty of a reconstruction problem may vary greatly on a **sample-by-sample** basis.

2. We propose **Severity Encoding** to estimate degradation severity in test-time.

Conclusion

1. Difficulty of a reconstruction problem may vary greatly on a **sample-by-sample** basis.

2. We propose **Severity Encoding** to estimate degradation severity in test-time.

3. Flash-Diffusion **automatically scales reconstruction effort** with degradation severity via latent diffusion.

Thank you for your attention!

https://github.com/z-fabian/flash-diffusion

Experiments

Robustness

Flash-Diffusion performance degrades more gracefully than the baseline solver's performance.