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l. Introduction



Image-to-image translation
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Claude Monet, The Seine river at Argenteuil, 1873 Realistic scene as seen by the artist

Unpaired Image-to-lmage Translation
using Cycle-Consistent Adversarial Networks



Image-to-image translation
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Claude Monet, The Seine river at Argenteuil, 1873 CycleGAN, 2017

Unpaired Image-to-lmage Translation
using Cycle-Consistent Adversarial Networks



Image-to-image translation

Mapping a given scene from a representation in domain X to another representation in
domain Y

taken on iPhone taken by DSLR

How can we learn such a translation?



Image-to-image translation

Mapping a given scene from a representation in domain X to another representation in
domain Y

taken on iPhone CycleGAN

How can we learn such a translation?



Paired Im-2-Im

* We have matching pairs of training data ‘/I;Z
e Supervised learning approach
* Training on joint distribution of the two representations R
S
N & } )

=

} .
Drawbacks: UP
e obtaining paired training data is difficult (4: T\ l
e might need expert authoring to create dataset — o \ '\
e some desired outputs might not even be well-defined / . ‘-




Unpaired Im-2-Im

e Training data consists of x; € X source setand Y; € Y target set
* No information provided on matching between X and Y
e Learn joint distribution from marginal distributions

generated pamting Unpaired Image-to-lmage Translation

using Cycle-Consistent Adversarial Networks



Generative adversarial nets

Real

Discriminator
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Generator
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Model Loss

Latent Random Variable
(Noise)

min max B, g, (2)[108 D(@)] + Eovp(z) llog(1 — D(G(2)))

Unpaired Image-to-image Translation
using Cycle-Consistent Adversarial Networks



1. CycleGAN



CycleGAN framework

* We want to learn mapping functions between two domains:

G: X—->Y maps images from domain X to domain Y
F:Y—> X maps images from domain Y to domain X

* We use adversarial training framework:

D discriminator trying to distinguish between images from domain X
X ‘ , -
and translated ‘fake’ images F(y), yeY

D discriminator trying to distinguish between images from domain Y
Y and translated ‘fake’ images G(x), x€ X

e Generators (G, F) and discriminators (Dy, Dy) are parameterized as neural networks




Adversarial loss

Real Image in domain X Fake Image in domain Y Reconstructed Image

M
real or fake ? DY
(ﬁ
/1

Discriminator for domain Y

Real Image in domain Y

Zoan G, Dy, X, Y) =k, ) [log Dy(y)] + E ) [1 - log Dy(G())]

ZLoan, Dy, X, Y) =E, [log Dy(x)| + E ) |1 — log Dy(F(y))



Adversarial loss

|s adversarial loss enough?
* In theory: yes, network can learn mappings such that

GX)~Y and FY)~X

* but with large enough network capacity the generators can memorize some
permutation of the target dataset

G(x) =y,

Output distribution
correct?
Meaningful
mapping?




Cycle consistency

 What is wrong with the previous network?

en-hun hun-en

spaceship » (rhaj6 » Spaceship
G F
Gx) =y




Cycle consistency loss

\/ v

X Y X Y cycle-consistency

gcyc(Ga F) — [Exrvpdam(x) [”F(G(X)) _ x”l] + [Eyrvpdam(y) [”G(F(y)) _ y”l]



Full objective function

* Training objective:

3(G, F,DX,Dy) —_ ‘gGAN(G’DY’X’ Y) + ‘gGAN(F’DX’X’ Y) + /13 (G, F)

cyc

e Formulation:

G*, F* = argmin max Z£(G, F, Dy, Dy)
G,F Dy.Dy

* Typical solution: alternating optimization

1. Samplefrom X and Y
2. Fix discriminator, update generator
3. Fix generator, update discriminator



Results

Cycle consistency on reconstructions

_Reconstruction F(G (x)
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Results

Where it works...

Summer _ Winter

Monet Z__ Photos

Zebras Z_ Horses

e —

P

horse — zebra

Photograph Van Gogh Cezanne

Changes in texture Changes in color




imitations

and where it doesn’t...

apple — orange
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horse — zebra

geometric changes* unexpected objects

*UNIT is better at geometric transformation: http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-network
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Comparison

CycleGAN

BiGAN CoGAN feature loss GAI}I SImGAN ’

& LN N
. e e e e e e e e e e e e e e - —
- .
SR & N ’.

p1X2pix

Ground truth

Map — Photo Photo — Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN 0.6% + 0.5% 0.9% + 0.5%
BiGAN/ALI 2.1% += 1.0% 1.9% 4+ 0.9%
SImMGAN 0.7% 4+ 0.5% 2.6% = 1.1%
Feature loss + GAN 1.2% + 0.6% 0.3% + 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% =+ 3.4%



l1l. Medical
applications



Pulications Method Loss Dataset Measures Remarks

MR — (T

Nie et al. (2017, 2018) Cascade GAN L1, 2,4 D16 M11, 12 [/1Brain; Pelvis
Emami et al. (2018) cGAN L1, 2 - M11, 12, 13 [/]Brain

CT - MR

Jin et al. (2019) CycleGAN L1, 2,3 - M11, 12 [X] Brain

Jiang et al. (2018) CycleGAN* L1,2,3,7,8 D8 M32 [X] Lung

MR < CT

Chartsias et al. (2017) CycleGAN L1, 3 D9 M32 [X] Heart
Zhang et al. (2018d) CycleGAN* L1, 3,7 - M32 [X][3D] Heart
Huo et al. (2018) CycleGAN* L1, 3,7 - M32 [X] Spleen
Chartsias et al. (2017) CycleGAN L1, 3 - M32 [X] Heart
Hiasa et al. (2018) CycleGAN* L1, 3,4 - M19, 32 [X] Musculoskeletal
Wolterink et al. (2017a) CycleGAN L1, 3 - M11, 12 [X] Brain

Huo et al. (2018b) CycleGAN L1,3,7 - M32 [X] Abdomen
Yang et al. (2018b) CycleGAN* L1, 2, 3,10 - M11, 12, 13 [X] Brain
Maspero et al. (2018) pix2pix L1, 2 - M11, 22 [/] Pelvis

CT — PET

Bi et al. (2017) cGAN L1, 2 - M11, 12 [v/] Chest
Ben-Cohen et al. (2018) FCN+cGAN 1,2 - M11, 12, 31 [/] Liver

PET — (T

Armanious et al. (2018c) cGAN* L1, 2, 8, 11 - M11, 12, 13, 14, 15, 18 [/] Brain

MR — PET

Wei et al. (2018) cascade cGAN L1, 2 - M29 [+/] Brain

Pan et al. (2018) 3D CycleGAN L1, 2,3 D16 M30 [/] Brain

PET — MR

Choi and Lee (2017) pix2pix L1, 2 D16 M13, 29 [/] Brain
Synthetic — Real

Hou et al. (2017) synthesizer+cGAN L1,2,7 D35, 36 M1, 32 [+/] Histopathology
Real — Synthetic

Mahmood et al. (2018) cGAN L1, 12 - M34 [X] Endocsocpy
Zhang et al. (2018c¢) CycleGAN* L1, 3,7 - M32 [X] X-ray
Domain adaption

Chen et al. (2018a) CycleGAN* L1, 3,7 D32, 33 M32 [X] X-ray

Tl <+ T2 MR

Dar et al. (2019) CycleGAN L1, 3 D11, 19, 22 M12, 13 [X] Brain

Yang et al. (2018c) cGAN L1, 2 D19 M11, 12, 19, 32, 33 [X] Brain
Welander et al. (2018) CycleGAN, UNIT L1, 2,3 D24 M11, 12, 19 [X] Brain

Liu (2018) CycleGAN L1, 2,3 D14 M32 [X] Knee

Yi et al., Generative adversarial network in medical imaging: A review, Medical image analysis, 2019




Deep learning in medicine
™ P e

loU (lungs): 91.4%
loU (heart): 88.9%

Denoising: low-field MRI, low dose CT (above) Segmentation: organ (above), tumor

Image synthesis: skin lesions (left), retinal images (right)

Yi et al., Generative adversarial network in medical imaging: A review, Medical image analysis, 2019



Cross-modal image synthesis

* Deep learning models are extremely data-hungry
e Data collection for medical tasks is challenging:
e expensive instruments (MR scanner)
e radiation exposure (CT, PET)
e expert knowledge (doctors) needed
e patient confidentiality guidelines
* |ack of medical data standards (compatibility)
* Often we have some labeled medical data but in different modalities

PET

MRI, T1

* |dea: translate all available data to the same modality!



Segmentation with CycleGAN

Segmented image Input Synthetic image

*Zhang et al., Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network, CVPR 2018



Shape consistency

Intrinsic ambiguity of cycle consistency to geometric transformations
Assume G, and Gy are cycle consistent:

G,(Gp(A) = A

Let 7 be a bijective geometric transformation with inverse T7-! and
4 =GyoT
;o —1
p=GpeT

Then G, and Gy are also cycle consistent!

0 x geometric distortion impacts
y medical diagnosis!

"° |




Segmentation with CycleGAN
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Translation results

MRI to CT
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Translation results

CT to MR MRI to CT

Ground truth

CycleGAN

CycleGAN+
shape
consistency




Conclusion

In image-to-image translation we want to learn a meaningful mapping from one
Image domain to another.

Generative adversarial models are powerful tools for such problems
But we need extra regularization on top of adversarial loss

Cycle consistency narrows down the space of desirable mappings by ensuring that
translating an image forward and backward results in the original image

Applications range from style transfer and photo enhancement to medical image
synthesis
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CoGAN

Generators Discriminators
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