HUMUS-Net

Hybrid Unrolled Multi-scale Network Architecture for Accelerated MRI Reconstruction

Zalan Fabian, Mahdi Soltanolkotabi

ground truth anatomy

sensitivity map of ith coil

Compressed sensing reconstruction $\hat{x} = \arg \min_{x} \|\mathscr{A}(x) - \tilde{k}\|^{2} + \mathscr{R}(x)$ data
prior
consistency
knowledge

fastMRI dataset

• Largest public dataset of fully sampled raw MRI measurements

	Volumes		Slices	
	Multi-coil	Single-coil	Multi-coil	Single-coil
training	973	973	34,742	34,742
validation	199	199	$7,\!135$	$7,\!135$
test	118	108	4,092	$3,\!903$
challenge	104	92	3,810	3,305

Field Strength	$1.5\mathrm{T}$	$3\mathrm{T}$
T1	375	407
T1 POST	849	641
T2	1651	2515
FLAIR	126	406
Total	3001	3969

fastMRI Public Leaderboard

fastMRI Public Leaderboard

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \nabla \mathscr{R}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \nabla \mathscr{R}(x^t) \right]$$

What is the best regularizer?

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

• Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

Parameterize regularizer gradient as NN!

 x_0

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Inverse problem formulation

$$\hat{x} = \arg\min_{x} \|\mathscr{A}(x) - y\|^2 + \mathscr{R}(x)$$

Iterative solution via GD

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Unroll GD iterations in k-space

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right]$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}}$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Denoiser Φ_{θ} is a U-Net

• Unroll GD iterations in k-space

$$x^{t+1} = x^t - \mu^t \left[\mathscr{A}^* \left(\mathscr{A}(x^t) - y \right) + \Phi_{\theta}(x^t) \right] \xrightarrow{\mathscr{F}} k^{t+1} = k^t - \mu^t M(k^t - \tilde{k}) + \Psi(k^t)$$

• Denoiser Φ_{θ} is a U-Net

Can we do better with modern architectures?

Transformers?

• Benefits of Transformers

Transformers?

- Benefits of Transformers
 - conv kernels are content-independent

Transformers?

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

- Benefits of Transformers
 - conv kernels are content-independent
 - conv is not efficient for long-range dependency modelling

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." *arXiv preprint arXiv:2103.14030* (2021). Liang, Jingyun, et al. "Swinir: Image restoration using swin transformer." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2021.

• Local window attention

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." *arXiv preprint arXiv:2103.14030* (2021). Liang, Jingyun, et al. "Swinir: Image restoration using swin transformer." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2021.

• Local window attention

• Swin Transformer for image restoration and super-resolution

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

Transformer-Conv hybrid!

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

- Transformer-Conv hybrid!
- Long-range dependencies via SA

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

- Transformer-Conv hybrid!
- Long-range dependencies via SA
- Implicit bias via Conv

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Local window attention

• Swin Transformer for image restoration and super-resolution

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

• Missing component: hierarchical, multi-scale representations

• Missing component: hierarchical, multi-scale representations

U-Net: multi-scale

• Missing component: hierarchical, multi-scale representations

U-Net: multi-scale

SwinIR: Transformer+Conv

• Missing component: hierarchical, multi-scale representations

Multi-scale Hybrid Feature Extractor

• Missing component: hierarchical, multi-scale representations

Multi-scale Hybrid Feature Extractor

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	≈16GB	9	0.9313
Unrolled SwinIR	≈16GB	72	0.9216

• Missing component: hierarchical, multi-scale representations

Multi-scale Hybrid Feature Extractor

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	≈16GB	9	0.9313
Unrolled SwinIR	≈16GB	72	0.9216
Unrolled, multi-scale SwinIR	≈16GB	66	0.9311

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224×224

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224 × 224

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224 × 224

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224 × 224

token embeddings

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224 × 224

Noisy MR image 640 × 368

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

ImageNet 224 × 224

token embeddings

Noisy MR image 640 × 368

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

• <u>Key challenge</u>: high-resolution input images **AND** dense prediction task

• Key challenge: high-resolution input images **AND** dense prediction task

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	\approx 16GB	9	0.9313
Unrolled, M-S SwinIR	\approx 16GB	66	0.9311

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

• Larger patch size?

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

• Our solution:

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

- Our solution:
 - extract high-res features via convolutions

Tackling high-resolution

Larger patch size?

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

- Our solution:
 - extract high-res features via convolutions
 - process only lower resolution features via Transformers

Tackling high-resolution

Larger patch size?

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

- Our solution:
 - extract high-res features via convolutions
 - process only lower resolution features via Transformers
 - synthesize high-res and low-res features for reconstruction

Tackling high-resolution

Larger patch size?

Model	GPU mem.	mins/epoch	Val. SSIM
E2E-VarNet	pprox 16GB	9	0.9313
Unrolled, M-S SwinIR	pprox 16GB	66	0.9311
Unrolled, M-S SwinIR, patch size 2	pprox 16GB	30	0.9171

- Our solution:
 - extract high-res features via convolutions
 - process only lower resolution features via Transformers
 - synthesize high-res and low-res features for reconstruction

• Adding unrolling

• Adding unrolling

Adding unrolling

Adding unrolling

Adding unrolling

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.8908	36.77

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.8908	36.77
HUMUS-Net	0.8934	37.04

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.8908	36.77
HUMUS-Net	0.8934	37.04

Stanford3D multi-coil knee, 8x acceleration			
Model	Val. SSIM	Val. PSNR	

.

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.8908	36.77
HUMUS-Net	0.8934	37.04

Stanford3D multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.9432 (±0.0063)	39.99 (±0.6144)

fastMRI multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.8908	36.77
HUMUS-Net	0.8934	37.04

Stanford3D multi-coil knee, 8x acceleration

Model	Val. SSIM	Val. PSNR
E2E-VarNet	0.9432 (±0.0063)	39.99 (±0.6144)
HUMUS-Net	0.9453 (±0.0065)	40.35 (±0.6460)

• fastMRI Public Leaderboard

fastMRI knee multi-coil ×8 test data			
Method	SSIM(↑)	PSNR (↑)	NMSE(↓)
E2E-VarNet [Sriram et al., 2020]	0.8900	36.9	0.0089
E2E-VarNet [†] [Sriram et al., 2020]	0.8920	37.1	0.0085
XPDNet [Ramzi et al., 2020]	0.8893	37.2	0.0083
Σ -Net [Hammernik et al., 2019]	0.8877	36.7	0.0091
i-RIM [Putzky et al., 2019]	0.8875	36.7	0.0091
U-Net [Zbontar et al., 2019]	0.8640	34.7	0.0132
HUMUS-Net (ours)	0.8936	37.0	0.0086
HUMUS-Net (ours) [†]	0.8945	37.3	0.0081

