Self-supervised representation learning

Part II: BYOL and SimSiam

I. Introduction

Self-supervised representation learning

[1]: figures in introduction from ml.berkeley.edu/blog/posts/contrastive_learning/ and https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607

Self-supervised representation learning

Collapse: constant representation across views is always predictive of itself!

- Avoids collapse
- Needs lots of challenging negative examples

Contrastive learning

Contrastive learning

Are negative examples necessary?

II. Bootstrap Your Own Latent (BYOL)

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Jean-Bastien Grill^{*,1} Florian Strub^{*,1} Florent Altché^{*,1} Corentin Tallec^{*,1} Pierre H. Richemond^{*,1,2} Elena Buchatskaya¹ Carl Doersch¹ Bernardo Avila Pires¹ Zhaohan Daniel Guo¹ Mohammad Gheshlaghi Azar¹ Bilal Piot¹ Koray Kavukcuoglu¹ Rémi Munos¹ Michal Valko¹ ¹DeepMind ²Imperial College [jbgrill,fstrub,altche,corentint,richemond]@google.com

Learning without negative examples

- Cross-view prediction framework
- Separate network for prediction and to produce target representations

Fixed target network

Online network	Target network	ImageNet accuracy of linear classifier
None	None (random guessing)	0.1%
None	fixed ResNet50 (randomly initialized)	1.4%
ResNet50 (trained)	fixed ResNet50 (randomly initialized)	18.8%

Can we do better with smarter target network?

Bootstrapping

Target in BYOL: exponential moving average of online network

BYOL architecture

Loss:

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}'_{\xi} \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z'_{\xi} \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z'_{\xi} \right\|_{2}}$$

 $\mathcal{L}^{ t{BYOL}}_{ heta,\xi} = \mathcal{L}_{ heta,\xi} + \widetilde{\mathcal{L}}_{ heta,\xi}$

(symmetrized loss)

• Dynamics: 1. Update online network: $\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta,\xi}^{\text{BYOL}}, \eta)$

2. Update target network: $\xi \leftarrow \tau \xi + (1 - \tau)\theta$

How does BYOL avoid collapse?

- No explicit term to prevent collapse to constant representation, such as negative examples in SimCLR
- Important observation: BYOL dynamics will NOT necessarily converge to min of $\mathcal{L}_{\theta,\xi}^{\text{BYOL}}$ w.r.t θ, ξ

Target network update $\xi \leftarrow \tau \xi + (1 - \tau)\theta$ is not in the direction of $\nabla_{\xi} \mathcal{L}_{\theta,\xi}^{\text{BYOL}}$!

- Hypothesis: there exists no $L_{\theta,\xi}$ such that BYOL dynamics is gradient descent on L jointly over θ,ξ
- There are still undesirable equilibria, but unstable

Experimental setup

- Augmentations: random flips, color distortion, Gaussian blur, solarization (same as SimCLR)
- Architecture:
 - Encoders: ResNet50(101, 150, 200) + MLP with BN
 - <u>Predictor</u>: MLP with BN
- Optimization:
 - LARS optimizer
 - 1000 epochs
 - 512 TPU cores (8 hours)
- Evaluation protocols:
 - Linear evaluation on ImageNet: freeze encoder + train linear classifier
 - <u>Semi-supervised training on ImageNet</u>: fine-tuning on 1% 10% labelled data
 - <u>Transfer to other classification tasks</u>: linear evaluation and fine-tuning on other datasets

Linear evaluation

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

(a) ResNet-50 encoder.

Method	Architecture	Param.	Top-1	Top-5
SimCLR [8]	ResNet-50 $(2\times)$	94 M	74.2	92.0
CMC [11]	ResNet-50 $(2\times)$	94 M	70.6	89.7
BYOL (ours)	ResNet-50 $(2 \times)$	94 M	77.4	93.6
CPC v2 [32]	ResNet-161	305 M	71.5	90.1
MoCo [9]	ResNet-50 $(4 \times)$	375 M	68.6	-
SimCLR [8]	ResNet-50 $(4 \times)$	375 M	76.5	93.2
BYOL (ours)	ResNet-50 $(4 \times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 $(2 \times)$	250M	79.6	94.8

(b) Other ResNet encoder architectures.

Semi-supervised

Method	Top-1		Top-5		
_	1%	10%	1%	10%	
Supervised [77]	25.4	56.4	48.4	80.4	
InstDisc	-	-	39.2	77.4	
PIRL [35]	-	-	57.2	83.8	
SimCLR [8]	48.3	65.6	75.5	87.8	
BYOL (ours)	53.2	68.8	78.4	89.0	

(a) ResNet-50 encoder.

Method	Architecture	Param.	Top-1		Top-5	
			1%	10%	1%	10%
CPC v2 [32]	ResNet-161	305M	-	-	77.9	91.2
SimCLR [8]	ResNet-50 $(2\times)$	94 M	58.5	71.7	83.0	91.2
BYOL (ours)	ResNet-50 $(2\times)$	94M	62.2	73.5	84.1	91.7
SimCLR [8]	ResNet-50 $(4 \times)$	375M	63.0	74.4	85.8	92.6
BYOL (ours)	ResNet-50 $(4 \times)$	375M	69.1	75.7	87.9	92.5
BYOL (ours)	ResNet-200 (2×)	250M	71.2	77.7	89.5	93.7

(b) Other ResNet encoder architectures.

Transfer learning

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Effect of batch size

Effect of augmentations

(b) Impact of progressively removing transformations

- Crops and flips of the same image share similar histogram
- Without color distortion, SimCLR relies on image histogram to differentiate between views of the same image and others
- SimCLR representations are not incentivized to retain information other than color histogram

What do we need to learn useful representations (without collapse)?

Negative examples?

Large batch size?

Momentum encoder?

III. SimSiam

Exploring Simple Siamese Representation Learning

Xinlei Chen Kaiming He

Facebook AI Research (FAIR)

Siamese networks

Siamese networks

Siamese networks

Minimalistic design

What is the only necessary component? **Stop-gradient!**

• Prediction head

	pred. MLP h	acc. (%)
baseline	lr with cosine decay	67.7
(a)	no pred. MLP	0.1
(b)	fixed random init.	1.5
(c)	lr not decayed	68.1

• Prediction head

	pred. MLP h	acc. (%)
baseline	lr with cosine decay	67.7
(a)	no pred. MLP	0.1
(b)	fixed random init.	1.5
(c)	lr not decayed	68.1

• Similarity function

	cosine	cross-entropy
acc. (%)	68.1	63.2

 $\mathcal{D}(p_1, z_2) = -\operatorname{softmax}(z_2) \cdot \log \operatorname{softmax}(p_1)$

• Prediction head

	pred. MLP h	acc. (%)
baseline	lr with cosine decay	67.7
(a)	no pred. MLP	0.1
(b)	fixed random init.	1.5
(c)	lr not decayed	68.1

• Similarity function

	cosine	cross-entropy	$\mathcal{T}(\dots)$
acc. (%)	68.1	63.2	$\mathcal{D}(p_1, z_2) = -\texttt{softmax}(z_2) \cdot \log \texttt{softmax}(p_1)$

• Symmetrized loss

	sym.	asym.	asym. $2 \times$
acc. (%)	68.1	64.8	67.3

• Batch size*

batch size	64	128	256	512	1024	2048	4096
acc. (%)	66.1	67.3	68.1	68.1	68.0	67.9	64.0

*SGD is used, not LARS

• Batch size*

batch size	64	128	256	512	1024	2048	4096
acc. (%)	66.1	67.3	68.1	68.1	68.0	67.9	64.0

*SGD is used, not LARS

• Batch normalization

		proj. MLP's BN		pred. M		
	case	hidden	output	hidden	output	acc. (%)
(a)	none	-	-	-	-	34.6
(b)	hidden-only	\checkmark	-	\checkmark	-	67.4
(c)	default	\checkmark	\checkmark	\checkmark	-	68.1
(d)	all	\checkmark	\checkmark	\checkmark	\checkmark	unstable
		•				

unstable training, not representation collapse
Hypothesis: SimSiam is an EM-like algorithm. It involves two sets of variables and solves two subproblems.

Hypothesis: SimSiam is an EM-like algorithm. It involves two sets of variables and solves two subproblems.

Consider loss:

$$\mathcal{L}(heta, \eta) = \mathbb{E}_{x, \mathcal{T}} \Big[\big\| \mathcal{F}_{ heta}(\mathcal{T}(x)) - \eta_x \big\|_2^2 \Big]$$
 (no predictor yet!)

Hypothesis: SimSiam is an EM-like algorithm. It involves two sets of variables and solves two subproblems.

Consider loss:

$$\mathcal{L}(\theta,\eta) = \mathbb{E}_{x,\mathcal{T}}\left[\left\|\mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_{x}\right\|_{2}^{2}\right] \quad \text{(no predictor yet!)}$$

Optimization problem:

 $\min_{\theta,\eta} \mathcal{L}(\theta,\eta)$

Hypothesis: SimSiam is an EM-like algorithm. It involves two sets of variables and solves two subproblems.

Consider loss:

$$\mathcal{L}(\theta,\eta) = \mathbb{E}_{x,\mathcal{T}}\left[\left\|\mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_x\right\|_2^2\right] \quad \text{(no predictor yet!)}$$

Optimization problem:

$$\min_{\theta,\eta} \mathcal{L}(\theta,\eta)$$

Solution by alternating algorithm:

$$\begin{aligned} \theta^t &\leftarrow \arg\min_{\theta} \mathcal{L}(\theta, \eta^{t-1}) \\ \eta^t &\leftarrow \arg\min_{\eta} \mathcal{L}(\theta^t, \eta) \end{aligned}$$

Step 1.

$$\theta^t \leftarrow \arg\min_{\theta} \mathcal{L}(\theta, \eta^{t-1})$$

- Update encoder parameters
- Use SGD to solve sub-problem
- Stop-gradient: we don't optimize over η
- SimSiam: approx. solution by one step of SGD

Step 1.

$$\theta^t \leftarrow \arg\min_{\theta} \mathcal{L}(\theta, \eta^{t-1})$$

- Update encoder parameters
- Use SGD to solve sub-problem
- Stop-gradient: we don't optimize over η
- SimSiam: approx. solution by one step of SGD

If this is true, we could run more iterations of SGD!

	1-step	10-step	100-step	1-epoch
acc. (%)	68.1	68.7	68.9	67.0

Step 2.

$$\eta^t \leftarrow \arg\min_{\eta} \mathcal{L}(\theta^t, \eta) \qquad \mathcal{L}(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \Big[\big\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_x \big\|_2^2 \Big]$$

Step 2.

$$\eta^t \leftarrow \arg\min_{\eta} \mathcal{L}(\theta^t, \eta) \qquad \mathcal{L}(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \Big[\big\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_x \big\|_2^2 \Big]$$

• Solution is

$$\eta_x^t \leftarrow \mathbb{E}_{\mathcal{T}} \Big[\mathcal{F}_{\theta^t} (\mathcal{T}(x)) \Big]$$

Step 2.

$$\eta^t \leftarrow \arg\min_{\eta} \mathcal{L}(\theta^t, \eta) \qquad \mathcal{L}(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \left[\left\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \eta_x \right\|_2^2 \right]$$

• Solution is

$$\eta_x^t \leftarrow \mathbb{E}_{\mathcal{T}} \Big[\mathcal{F}_{\theta^t}(\mathcal{T}(x)) \Big]$$

- This is the average representation of x over the distribution of augmentations
- Approximate expectation by sampling *a single view*

$$\eta_x^t \leftarrow \mathcal{F}_{\theta^t}(\mathcal{T}'(x))$$
$$\theta^{t+1} \leftarrow \arg\min_{\theta} \mathbb{E}_{x,\mathcal{T}} \Big[\big\| \mathcal{F}_{\theta}(\mathcal{T}(x)) - \mathcal{F}_{\theta^t}(\mathcal{T}'(x)) \big\|_2^2 \Big]$$

Adding predictor

- Predictor should minimize $\mathbb{E}_{z}\left[\left\|h(z_{1})-z_{2}\right\|_{2}^{2}\right]$
- Minimizer:

 $h(z_1) = \mathbb{E}_z[z_2] = \mathbb{E}_{\mathcal{T}}[f(\mathcal{T}(x))]$

- Predictor learns to estimate the expectation
- Sampling of ${\mathcal T}$ is distributed over the epochs

Adding predictor

- Predictor should minimize $\mathbb{E}_{z} \left\| h(z_{1}) z_{2} \right\|_{2}^{2}$
- Minimizer:

 $h(z_1) = \mathbb{E}_z[z_2] = \mathbb{E}_{\mathcal{T}}[f(\mathcal{T}(x))]$

- Predictor learns to estimate the expectation
- Sampling of ${\mathcal T}$ is distributed over the epochs

If this is true, we could estimate expectation using moving average!

$$\eta_x^t \leftarrow m * \eta_x^{t-1} + (1-m) * \mathcal{F}_{\theta^t}(\mathcal{T}'(x))$$

Predictor	Top-1 acc.
None	0.1%
MLP	68.1%
moving average	55.0%

Results

ImageNet linear evaluation

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	\checkmark		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	\checkmark	\checkmark	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		\checkmark	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

Transfer learning

	VOC	C 07 dete	ction	VOC 07+12 detection			COCO detection			COCO instance seg.		
pre-train	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀ ^{mask}	APmask	AP ₇₅ ^{mask}
scratch	35.9	16.8	13.0	60.2	33.8	33.1	44.0	26.4	27.8	46.9	29.3	30.8
ImageNet supervised	74.4	42.4	42.7	81.3	53.5	58.8	58.2	38.2	41.2	54.7	33.3	35.2
SimCLR (repro.+)	75.9	46.8	50.1	81.8	55.5	61.4	57.7	37.9	40.9	54.6	33.3	35.3
MoCo v2 (repro.+)	77.1	48.5	52.5	82.3	57.0	63.3	58.8	39.2	42.5	55.5	34.3	36.6
BYOL (repro.)	77.1	47.0	49.9	81.4	55.3	61.1	57.8	37.9	40.9	54.3	33.2	35.0
SwAV (repro.+)	75.5	46.5	49.6	81.5	55.4	61.4	57.6	37.6	40.3	54.2	33.1	35.1
SimSiam, base	75.5	47.0	50.2	82.0	56.4	62.8	57.5	37.9	40.9	54.2	33.2	35.2
SimSiam, optimal	77.3	48.5	52.5	82.4	57.0	63.7	59.3	39.2	42.1	56.0	34.4	36.7

 Self-supervised learning is about learning good representations without human annotation

- Self-supervised learning is about learning good representations without human annotation
- **Contrastive methods** learn representations by discriminating between different views of the same image and views of a different image

- Self-supervised learning is about learning good representations without human annotation
- **Contrastive methods** learn representations by discriminating between different views of the same image and views of a different image
- Now we know that negative examples are not necessary for good representation learning

- Self-supervised learning is about learning good representations without human annotation
- **Contrastive methods** learn representations by discriminating between different views of the same image and views of a different image
- Now we know that negative examples are not necessary for good representation learning
- **BYOL** and **SimSiam** learn to predict the representation of an image from the representation of another view of **the same image**

- Self-supervised learning is about learning good representations without human annotation
- **Contrastive methods** learn representations by discriminating between different views of the same image and views of a different image
- Now we know that negative examples are not necessary for good representation learning
- **BYOL** and **SimSiam** learn to predict the representation of an image from the representation of another view of **the same image**
- It is still an open question how these methods learn useful representations while avoiding representational collapse

MoCo v2

Connection to EM

Maximum Likelihood Estimate

$$\hat{\theta}_{ML} = \arg\max_{\theta} p(X|\theta) = \arg\max_{\theta} \int p(X, Z = z|\theta) dz$$

typically intractable

Connection to EM

Expectation-Maximization algorithm

E-step: obtain Expectation of complete likelihood given current model

 $Q(\theta | \theta_t) := \mathbb{E}_{Z|X,\theta} \log L(\theta; X, Z)$

M-step: update the model given the data by Maximization

 $\theta_{t+1} = \arg \max_{\theta} Q(\theta \,|\, \theta_t)$

Notes:

- This is equivalent to maximizing a lower bound of $\log L(\theta; X)$
- EM step always increases $\log L(\theta; X)$
- No guarantee that it converges to MLE (multi-modal distributions)

EM derivation

$$\max_{\theta} \log \int_{x} p(x, z; \theta) dx = \max_{\theta} \log \int_{x} \frac{q(x)}{q(x)} p(x, z; \theta) dx$$

$$= \max_{\theta} \log \int_{x} q(x) \frac{p(x, z; \theta)}{q(x)} dx$$

$$= \max_{\theta} \log E_{X \sim q} \left[\frac{p(X, z; \theta)}{q(X)} \right]$$
Jensen's Inequality
$$\geq \max_{\theta} E_{X \sim q} \log \left[\frac{p(X, z; \theta)}{q(X)} \right]$$

$$= \max_{\theta} \int_{x} q(x) \log p(x, z; \theta) dx - \int_{x} q(x) \log q(x) dx$$

Jensen's Inequality: equality holds when $f(x) = \log \frac{p(x, z; \theta)}{q(x)}$ is an affine function. This is achieved for $q(x) = p(x|z; \theta) \propto p(x, z; \theta)$

EM Algorithm: Iterate
I. E-step: Compute
$$q(x) = p(x|z;\theta)$$

2. M-step: Compute $\theta = \arg \max_{\theta} \int_{x} q(x) \log p(x,z;\theta) dx$

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa13/slides/Likelihood_EM_HMM_Kalman.pdf