Data augmentation for deep learning based accelerated MRI reconstruction with limited data

Zalan Fabian¹, Reinhard Heckel^{2,3}, Mahdi Soltanolkotabi¹ USC¹, Technical University of Munich², Rice University³

USC Viterbi

School of Engineering Ming Hsieh Department of Electrical and Computer Engineering

Motivation MRAugment pipeline **Limited data** in medical imaging... but DL models are **data-hungry!** • Noise in MRI \longrightarrow complex - i.i.d. Gaussian in real/imaginary parts \longrightarrow real $\mathcal{F}_{\boldsymbol{x}_{c}}$ \mathcal{M} $\tilde{\boldsymbol{k}}_{c}$ \mathcal{M} - independent across coils $k_i = M \mathcal{F} S_i x^* + z_i$ image synthesis • Transformations reconstruction pixel preserving interpolating augmentations augmentations Combine R/J $oldsymbol{x}_a$ Challenges of medical data collection **Cost**: expensive instruments, time of experts augmentation - applied coil-by-coil

- augmentation probability is

- **Time**: long acquisition time (MRI: 60 mins / scan)
 - **Health**: ionizing radiation exposure (CT, PET)

denoising

segmentation

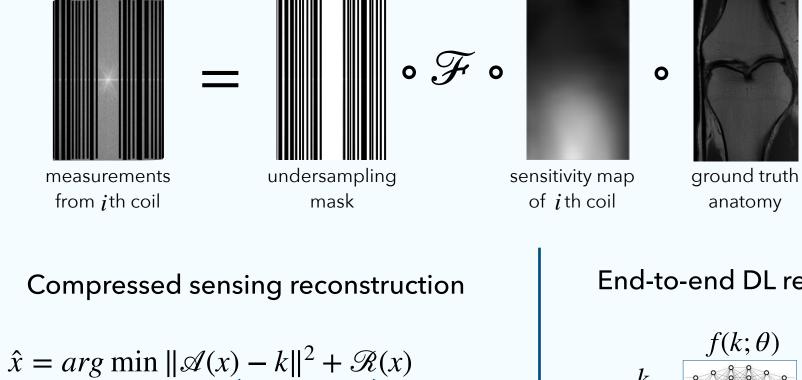
 \bullet

(\$

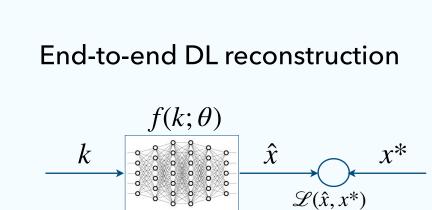
Data curation: patient confidentiality, data compatibility How do we train with limited data?

Background

• Accelerated multi-coil MRI acquisition



prior knowledge



anatomy

DL model

+

measuremen

noise

Data augmentation for reconstruction

Data augmentation (DA) for classification

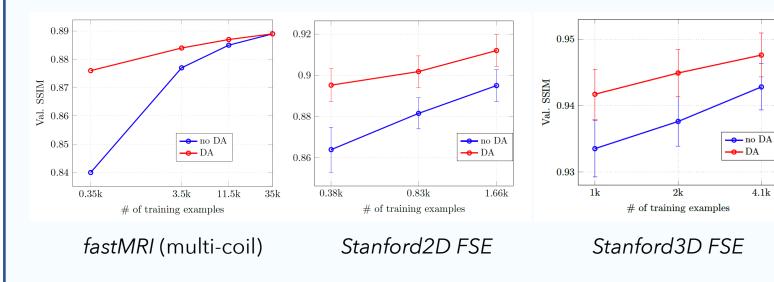
data consistency

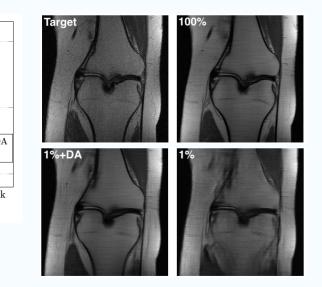
Experimental results

	# of slices	# of coils	Anatomies	Field strength
fastMRI knee	35k train + 7k val	15	knee	1.5 T, 3.0 T
Stanford3D FSE	5120	8	knee	3.0 T
Stanford2D FSE	2037	8-16	various	3.0 T

- **Goal**: study the effect of DA as a function of the size of training set Model: E2E VarNet Acceleration: 8x Metric: SSIM

1.Significant improvement in the low-data regime



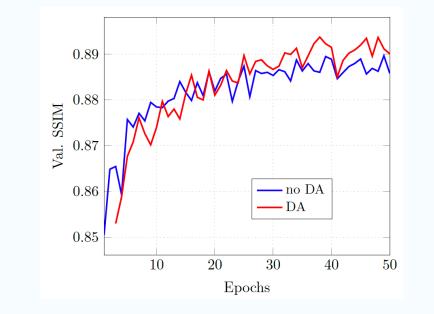


- 2. Improved model robustness
 - Improved SSIM on **unseen scanners**

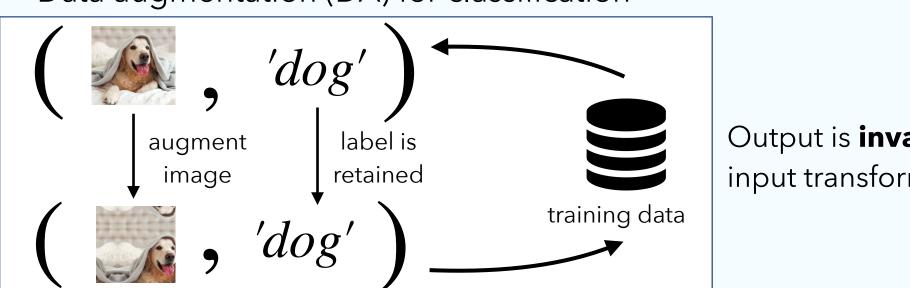
2% train	no DA	DA
$3T \rightarrow 3T$	0.8646	0.9049
$3T \rightarrow 1.5T$	0.8241	0.8551
$1.5T \rightarrow 3T$	0.8174	0.8913

100% train	no DA	DA
$3T \rightarrow 3T$	0.9177	0.9185
$3T \rightarrow 1.5T$	0.8686	0.8690
$1.5T \rightarrow 3T$	0.9043	0.9062

• Improved SSIM on **unseen anatomies**



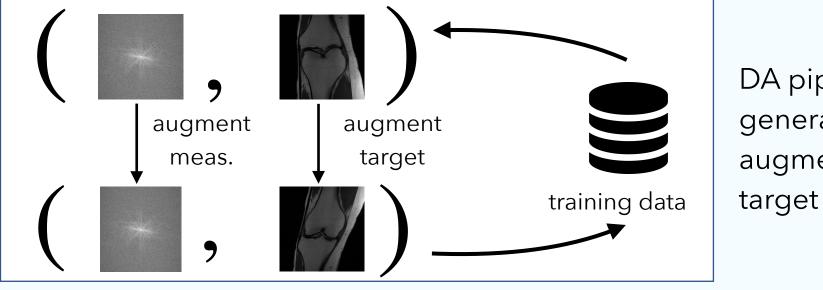
- We train on the full fastMRI knee dataset with and without DA



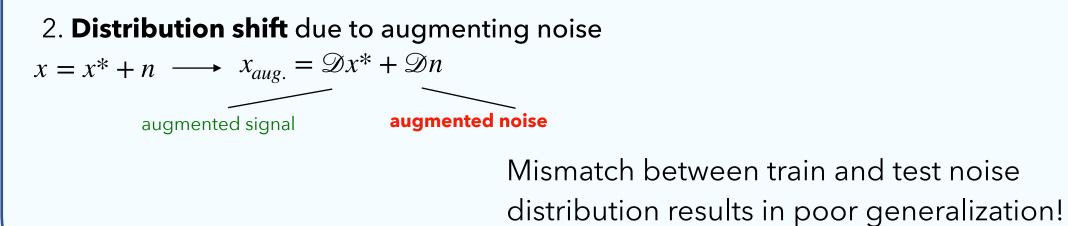
Output is **invariant** to input transformations

DA in reconstruction problems

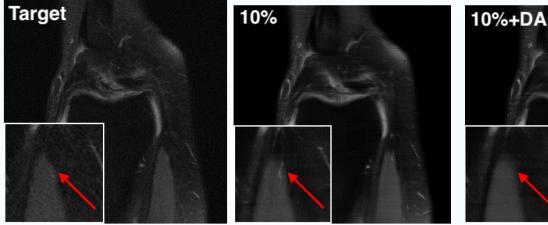
1. Output is **not invariant** to transformations



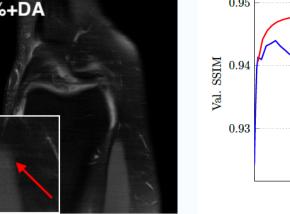
DA pipeline has to generate **both** the augmented meas. and



• Avoids hallucinations



Feature is not present on ground truth but Hallucinated feature appears on low-data reconstruction is avoided with DA



– DA Epoch

DA prevents the model from overfitting to the training dataset

- We evaluate the models on fastMRI brain data