

Expending the same amount of resources to reconstruct any sample (easy or hard) is potentially wasteful.

Idea: adapt the compute allocation based on the difficulty of the problem on a sample-by-sample basis in test time!

Quantifying Difficulty

Image space

 $y = c \cdot x, \ c \in \mathbb{R}^+$

 $y = x + n, n \sim \mathcal{N}(0, \sigma^2 I)$

- arbitrarily high perturbation
- reconstruction is trivial
- small perturbation
- reconstruction is challenging

Autoencoder latents

Idea: quantify severity of degradation in the latent space of an autoencoder

Adapt and Diffuse: Sample-adaptive **Reconstruction via Latent Diffusion Models**

Zalan Fabian*, Berk Tinaz*, Mahdi Soltanolkotabi

Estimate degradation severity given corrupted image

 compressed representation of relevant information in image

 natural space to quantify loss of information due to corruption

Pretrained encoder

space

<u>Objectives:</u>

- I. Predict latent of clean image
- 2. Estimate prediction error

We leverage latent prediction error as a proxy for degradation severity!

Training the severity encoder

<u>Assumption</u>: prediction error is zero-mean i.i.d. Gaussian: $e(y) = \hat{z} - z_0 \sim \mathcal{N}(0, \sigma_*^2(y)\mathbf{I})$ $ar{\sigma}^2(m{y},m{z}_0) = rac{1}{d-1} \sum_{i=1}^d (m{e}^{(i)} - rac{1}{d} \sum_{j=1}^d m{e}^{(j)})^2$

Severity encoding experiments

- Predicted severity strongly correlates with blur level
- •Outliers indicate the presence of additional contributing factors

Latent Diffusion Solvers

Forward diffusion process

Reverse diffusion process

Intuition: the more degraded the input, the larger the prediction error will be in latent space

encoder

 $\min_{\theta} \mathbb{E}_{\boldsymbol{x}_0 \sim q_0(\boldsymbol{x}_0), \boldsymbol{y} \sim \mathcal{N}(\mathcal{A}(\boldsymbol{x}_0), \sigma_y^2 \mathbf{I})} \left\| \left\| \boldsymbol{z}_0 - \hat{\boldsymbol{z}}(\boldsymbol{y}; \theta) \right\|^2 + \lambda_{\sigma} \left\| \bar{\sigma}^2(\boldsymbol{y}, \boldsymbol{z}_0) - \hat{\sigma}(\boldsymbol{y}; \theta) \right\|^2 \right\|$ reconstruction error prediction

Sample-adaptive reconstruction via severity encoding

Adaptive starting time: $i_{start}(\mathbf{y}) = \arg \min_{i \in [1,2,...,N]} \left| \frac{1}{\hat{\sigma}(\mathbf{y})^2} - \frac{\tilde{u}_i}{b_i^2} \right|$

FlashDiffusion acts as a wrapper around any baseline latent diffusion solver, imbuing it with sample-adaptivity.

Comparison with baseline solvers

FFHQ	Gaussian Deblurring (Varying)					Gaussian Deblurring (Fixed)					Nonlinear Deblurring					Random Inpainting				
Method	$PSNR(\uparrow)$	$\mathbf{SSIM}(\uparrow)$	$\text{LPIPS}(\downarrow)$	$\text{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$\mathbf{SSIM}(\uparrow)$	$LPIPS(\downarrow)$	$\text{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$\mathbf{SSIM}(\uparrow)$	$\text{LPIPS}(\downarrow)$	$\text{FID}(\downarrow)$	NFE	$PSNR(\uparrow)$	$\mathbf{SSIM}(\uparrow)$	$LPIPS(\downarrow)$	$\mathrm{FID}(\downarrow)$	NFE
Latent-DPS	23.69	0.6418	0.3579	87.26	1000	22.88	0.6136	0.3690	89.38	1000	22.07	0.5974	0.3814	90.89	1000	23.96	0.6566	0.3666	93.65	1000
Elash(Latent-DPS)	<u>29.17</u>	0.8182	0.2240	55.57	100.3	27.44	<u>0.7691</u>	0.2823	80.44	127.7	27.17	<u>0.7659</u>	0.2695	<u>69.78</u>	136.1	<u>29.21</u>	0.8414	<u>0.1945</u>	<u>53.95</u>	104.7
PSLD (Rout et al., 2024)	25.06	0.6769	0.3194	79.79	1000	23.72	0.6183	0.3324	88.45	1000	-	-	-	-	-	24.94	0.6617	0.3672	85.64	1000
Flash(PSLD)	<u>29.26</u>	0.8205	<u>0.2203</u>	<u>53.27</u>	100.3	27.44	<u>0.7657</u>	<u>0.2797</u>	<u>65.35</u>	127.7	-	-	-	-	-	27.06	<u>0.8018</u>	<u>0.2185</u>	<u>55.12</u>	104.7
GML-DPS (Rout et al., 2024)	24.98	0.6884	0.3471	100.27	1000	24.01	0.6574	0.3621	102.80	1000	23.00	0.6426	0.3812	108.79	1000	25.20	0.7044	0.3527	103.3	1000
Flash(GML-DPS)	<u>29.21</u>	<u>0.8276</u>	0.2274	<u>69.16</u>	100.3	27.47	<u>0.7699</u>	0.2816	<u>69.81</u>	127.7	<u>27.11</u>	<u>0.7640</u>	<u>0.2756</u>	<u>81.93</u>	136.1	<u>28.95</u>	<u>0.8437</u>	<u>0.1957</u>	<u>59.39</u>	104.7
ReSample (Song et al., 2023)	28.77	0.8219	0.2587	81.96	500	27.62	0.7789	0.3148	102.47	500	26.61	0.7318	0.2838	68.57	500	27.51	0.7892	0.2460	63.39	500
Flash(ReSample)	<u>29.07</u>	<u>0.8330</u>	<u>0.2383</u>	<u>74.76</u>	49.9	<u>27.77</u>	<u>0.7845</u>	<u>0.3092</u>	<u>100.84</u>	63.6	<u>26.88</u>	<u>0.7660</u>	<u>0.2667</u>	<u>64.57</u>	67.8	<u>28.13</u>	<u>0.8260</u>	<u>0.2045</u>	<u>56.67</u>	52.1
AE	29.46	0.8358	0.2671	89.29	-	27.69	0.7820	0.3396	110.56	-	27.17	0.7786	0.3364	111.24	-	29.23	0.8432	0.2515	85.87	-
SwinIR (Liang et al., 2021)	30.69	0.8583	0.2409	87.61	-	28.41	0.8021	0.3091	108.49	-	27.60	0.7928	0.3093	99.56	-	30.08	0.8654	0.2223	78.32	-
OPS (Chung et al., 2022a)	28.34	0.7791	0.2465	81.70	1000	25.49	0.6829	0.3035	97.89	1000	22.77	0.6191	0.3601	109.58	1000	28.30	0.8049	0.2451	82.78	1000

FlashDiffusion accelerates the baseline solver by a factor of up to 10x on average and greatly improves reconstruction quality.

Adaptivity

FlashDiffusion achieves best perceptual quality FlashDiffusion performance degrades compared to any non-adaptive starting time. more gracefully than baseline.

$$\sim \mathcal{N}(\mathbf{z}_{0}, \hat{\sigma}(\mathbf{y})^{2}\mathbf{I}) \xleftarrow{\text{match}} \mathbf{SNR} \qquad \text{Latent diffusion process} \qquad q_{i}(\mathbf{z}_{i}|\mathbf{z}_{0}) \sim \mathcal{N}(a_{i}\mathbf{z}_{0}, b_{i}^{2}\mathbf{I})$$

Experiments

Robustness

