

Diffusion models reverse a Gaussian noising process for image generation. Data-consistency is encouraged by additional guidance.

Key idea: tailor diffusion process to the image degradation, such that data-consistency is ensured!

Stochastic Degradation Process (SDP)

Ground truth t = 0

 $oldsymbol{y}_t = \mathcal{A}_t(oldsymbol{x}_0) + oldsymbol{z}_t, \ oldsymbol{z}_t \sim \mathcal{N}(oldsymbol{0}, \sigma_t^2 \mathbf{I})$

DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency

Degradation severity

SDP is defined based on a notion of degradation severity:

We learn to iteratively reverse small steps of degradation, which we call incremental reconstruction (IR).

 $\mathcal{A}_t(x_0)$

Incremental Reconstruction Loss (IRL)

$$\mathcal{L}_{IR}(\theta) = \mathbb{E}_{t,(x_0,y_t)} \left[\left\| \mathcal{A}_{t-\Delta t}(\Phi_{\theta}(y_t,t)) - \mathcal{A}_{t-\Delta t}(x_0) \right\|^2 \right]$$

Given a degraded image with severity t, we predict a slightly less severe $(t - \Delta t)$ degradation of the clean image.

Theoretical insights

1) Upper-bound on IR error depends on degradation smoothness (Theorem 3.4).

2) Minimizing IRL enables learning both incremental reconstruction and denoising (Proposition A.6).

3) Running [UPDATE] ensures data-consistency in every reverse diffusion step (Theorem 3.6).

Measurement

Zalan Fabian, Berk Tinaz, Mahdi Soltanolkotabi

the reverse process.

Perceptual image quality (LPIPS, FID) is fundamentally at odds with distortion (PSNR, SSIM). We control the trade-off via early-stopping

Results

Fast sampling

Excellent reconstruction quality

	Deblurring				Inpainting			
Method	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$
Dirac-PO (ours)	26.67	0.7418	0.2716	53.36	25.41	0.7595	0.2611	39.43
Dirac-DO (ours)	28.47	<u>0.8054</u>	0.2972	69.15	26.98	0.8435	0.2234	<u>51.87</u>
DPS (Chung et al., 2022a)	25.56	0.6878	0.3008	65.68	21.06	0.7238	0.2899	57.92
DDRM (Kawar et al., 2022a)	27.21	0.7671	<u>0.2849</u>	65.84	<u>25.62</u>	0.8132	<u>0.2313</u>	54.37
SwinIR (Liang et al., 2021)	28.53	0.8070	0.3048	72.93	24.46	<u>0.8134</u>	0.2660	59.94
PnP-ADMM (Chan et al., 2016)	27.02	0.7596	0.3973	74.17	12.27	0.6205	0.4471	192.36
ADMM-TV	26.03	0.7323	0.4126	89.93	11.73	0.5618	0.5042	264.62
	Deblurring				Inpainting			
Method	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$	$PSNR(\uparrow)$	$SSIM(\uparrow)$	$LPIPS(\downarrow)$	$FID(\downarrow)$
Dirac-PO (ours)	24.68	0.6582	0.3302	<u>53.91</u>	26.36	0.8087	0.2079	<u>34.33</u>
Dirac-DO (ours)	25.76	0.7085	0.3705	83.23	28.92	0.8958	0.1676	38.25
DPS (Chung et al., 2022a)	21.51	0.5163	0.4235	52.60	22.71	0.8026	0.1986	34.55
DDRM (Kawar et al., 2022a)	24.53	0.6676	<u>0.3917</u>	61.06	25.92	0.8347	0.2138	33.71
SwinIR (Liang et al., 2021)	25.07	<u>0.6801</u>	0.4159	84.80	<u>26.87</u>	<u>0.8490</u>	0.2161	45.69
PnP-ADMM (Chan et al., 2016)	25.02	0.6722	0.4565	98.72	18.14	0.7901	0.2709	101.25
ADMM-TV	24.31	0.6441	0.4578	88.26	17.60	0.7229	0.3157	120.22

Table 1. Experimental results on the FFHQ (top) and ImageNet (bottom) test splits.