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Motivation

Mystery

High energy beams         special devices needed (no optics)          information loss

Extremely long acquisition time (1000 days!)

Challenges of imaging on the nano-scale

From 3D object to 2D exit waves

From 2D exit waves to measurements

The ambiguity challenge

Numerical experiments

Reconstruction via 3D-AWF

Object modeling

Represented by complex refractive index
Discretization: voxels on cubic lattice:

Exit wave equation
Nonlinear projection based on Radon-transform: 

Ptychography

Exit wave propagation to the far field

Magnitude-only measurements

Radon-transform has non-trivial null-

space, given projection may belong to 

infinitely many objects 

This can be resolved by sufficiently 

large number of illumination angles

x = d + ib

Beam may accumulate  phase shift of       

while passing through the object

Assume                          , then 

Voxel-level ambiguity:     and                       
produce same measurements

attenuationphase shift

Formulation as optimization problem 
No closed form solution, we need an iterative method: 

Data consistency: the solution is consistent with the measurements: 

Prior knowledge: total variation regularizer enforces piecewise constant 
structure
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x̂ = argminx∈ℂN ℒ(x) + λTVTV3D(x; w)

data consistency prior knowledge

ℒ(x) = ∑L
l=1 ∥ yℓ − |Agℓ(x) | ∥2
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yℓ = |Agℓ |

3D-AWF algorithm

yτ+1 = xτ + βτ(xτ − xτ−1) − μτ ∇ℒ(xτ + βτ(xτ − xτ−1))

xτ+1 = proxTV(yτ+1)

Acceleration

Proximal map:

Convergence Theorem
Let      be a global minimum of        . If we run 3D-AWF updates with step 

size sufficiently small and          , then we have 

x* ℒ(x)

βτ = 0

min
τ∈{1,2,...,T}

∥proxTV(yτ) − yτ∥ ≤ μ
ℒ(x0) − ℒ(x*)

T + 1

Experimental setup

Highly realistic simulated 3D chip 

Illumination angles:        increments 

with

   # of angles

L ∈ {5, 10, 25, 50, 100, 250, 400}

π/L

Reconstruction results:

Magnitude of ground truth and 
reconstructions in the x-y plane at z = 1

Comparison of relative reconstruction error 
across various number of illumination angles

Key takeaway
Linear approximation is inaccurate for thick specimens

Prior knowledge can: (1) reduce acquisition time, (2) mitigate ambiguity 

3D rendering of the magnitude and phase of the reconstructed volume 

di di + λk, k ∈ ℤ

Ambiguity caused by phase wrapping
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Ambiguity of tomography

2D phase retrieval and tomography 

in separate steps

Uses linear approximation:

exp ( 2πi
λ Tℓx) ≈ 1 + 2πi

λ Tℓx

Comparison: a 2-step approach
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We project object 1 and 2 along the z-axis. 
Even though the objects are significantly 
different, the projection images are identical.

Due to phase wrapping, the phase plot may 
have jumps of      . We can penalize 
variations in the object to mitigate phase 
wrapping.

2πk

The diffraction pattern in the far field is the 
Fourier transform of the exit wave multiplied 
by the probe function.
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